
3DSomaMS User’s Guide

Sergio Luengo-Sanchez1, Concha Bielza1, Ruth Benavides-Piccione2,3, Isabel
Fernaud-Espinosa2, Javier DeFelipe2,3,4 and Pedro Larrañaga1

1Computational Intelligence Group, Escuela Técnica Superior de Ingenieros Informáticos,
Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus

Montegancedo, Boadilla del Monte, Madrid, 28660, Spain
2Laboratorio Cajal de Circuitos Corticales, Centro de Tecnoloǵıa Biomédica, Universidad
Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain

3Instituto Cajal (CSIC), Ave. Dr. Arce, 37, Madrid, 28002, Spain
4Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas

(CIBERNED), ISCII, Madrid, 28031, Spain

Correspondence: sluengo@fi.upm.es

Abstract

The definition of the soma is fuzzy, as there is no clear line demarcating the soma of the
labeled neurons and the origin of the dendrites and axon. Thus, the morphometric analysis of
the neuronal soma is highly subjective. This software provides a mathematical definition and an
automatic segmentation method to delimit the neuronal soma. We applied this method to the
characterization of pyramidal cells, which are the most abundant neurons in the cerebral cortex.
Thus, this software is a means of characterizing pyramidal neurons in order to objectively compare
the morphometry of the somata of these neurons in different cortical areas and species.

1 Prerequirements

This software has been developed as an R package. Consequently it is needed an R environment and
internet connectivity to download additional package dependencies. R software can be downloaded
from http://cran.rstudio.com/index.html. During R installation “64-bit Files” must be ticked.

Figure 1: R installation: 64-bit option must be ticked.

1

http://cran.rstudio.com/index.html


To process the meshes our package uses MeshLab. Since the latest version of MeshLab is only
available for Microsoft Windows 64-bits and we found some problems running automatic scripts in
previous versions of MeshLab, a Microsoft Windows 64-bits OS is needed to use our package. Latest
version of MeshLab software is available at http://sourceforge.net/projects/meshlab/files/

latest/download?source=files.

2 3DSomaMS installation

Once R and MeshLab are installed, next step is the installation and configuration of the package.
First of all, MeshLab path must be included in the environment variable PATH. The steps to follow
are detailed below. An image of each step is shown in AppendixA:

1. Click Start symbol of Windows → Right click on Computer → Select Properties.

2. Select Advanced system settings at the top left corner.

3. Select the Advanced tab and click Environment Variables...

4. Search Path in System variables box → Select Path → Click Edit...

5. Go to the end of the Variable value text field → Do not close the window.

6. Click Start symbol of Windows → Search meshlabserver → Right click on meshlabserver →
Select Properties.

7. Select Shortcut tab → Copy the text in Start in text field without the quotes.

8. Go to the window that you left opened → Add a semicolon at the end of the Variable value text
field → Paste the text you copied previously → Select OK in all windows to close them.

Now, to install the package it should be copied the next sentences in the R console:

setRepositories(addURLs = cigrepo = "http://vps136.cesvima.upm.es/R"))

install.packages("SomaMS")

During installation it is possible that some warning messages appear. It is due to R has not
got writing permission. Clicking OK you create a folder in My Documents to save the package
dependencies. Then, when R asks you to install from sources you must answer Yes. One the package
is installed and uncompressed its size will be more than 300MB due to the meshes included as examples.
An example is showed in Fig.2. Finally you load the package with the command:

library("SomaMS")

After that, you have loaded 3DSomaMS in the R workspace so you can start to repair and segment
somas. The somas that we show in some images of the article are included as mesh examples. In the
next section we show how to execute these examples and how to repair and segment new somas. It
should be noted that the original generated triangular meshes necessary for the development of the
present method, were created to obtain a single coarse solid surface of a particular threshold, which
included both the soma and proximal dendrites of labeled neurons. Thus, they are available only for
reproducibility purposes of the present algorithm.

2

http://sourceforge.net/projects/meshlab/files/latest/download?source=files
http://sourceforge.net/projects/meshlab/files/latest/download?source=files


Figure 2: 3DSomaMS command installation

Figure 3: Help page of the package

3 Using 3DSomaMS

Lets start writing ?SomaMS in the R console. The page that appears in front of you is the help page
(see Fig.3). Some general information about the package is shown. Next, if you click the hyperlink
Index at the end of the page you will be redirected to the index page where you can see all the
functions of the software and a short description of each one of them (see Fig.4).

Depending on the characteristics of your meshes the flow of the execution could change. In the

3



Figure 4: Index page of the package

examples that we provide, we first convert the meshes from VRML format to PLY format. After that,
somas are repaired and finally segmented. However, when your meshes are initially in PLY format
or they do not need the repairing process you can avoid some steps. Next, the main functions are
explained.

3.1 convert somas to PLY

Some scientific software like Imaris allow visualization of 3D and 4D microscopy data. Usually, they
export that information in meshes which are in VRML format. However, to work with MeshLab is
preferable meshes in PLY format. This is due to PLY format manages more information than only
vertices and the faces as, for example, colors, normals, quality, etc. To convert meshes from VRML
format to PLY format you must run the convert somas to PLY function.

Clicking hyperlink convert somas to PLY in the index page or writing

?convert_somas_to_PLY

in R console opens the help page of the function.
This page shows the following example that can be executed if it is directly copied to the R console:

convert_somas_to_PLY(read_directory = system.file("test/VRMLs", package = "SomaMS"),

write_directory = file.path(tempdir(), "PLYs"), parallel = TRUE)

The example reads the VRMLs saved in a folder and creates a temporal directory to save the
meshes in PLY format. You can change the path of read directory to read your own VRMLs. Also,
you can change write directory to save the PLY files in other folder. The output meshes of some
functions are the input of other functions so if you change the path of write directory you also have
to change the input path of the next function. write directory usually will be the first input of the
repair somas or segment somas functions.

4



3.2 repair somas

The 3D generated somata sometimes showed distortions due to the hole produced by the micropipette
used to inject the dye. Thus, the labeled cell bodies are not suitable for an automated morphological
analysis because the measurements on a damaged surface are incorrect. Therefore, once the meshes
are in PLY format, both if you have applied the previous step to convert your somas from VRML or
your somas are initially in PLY format, the injected somas should be repaired.

To repair your somas you should run the repair somas function. It also have the following
example that you can execute copying and pasting it to the R console:

repair_somas(directory = file.path(tempdir(), "PLYs"), output_ambient_occlusion =

file.path(tempdir(), "ambient_occlusion"), broken_mesh = file.path(tempdir(),

"broken_mesh_ao"), output_poisson_reconstruction = file.path(tempdir(),

"poisson_reconstruction_ao"))

This function has four inputs. The first one is the folder where damaged somas in PLY format are
saved. Hence, when you have executed previously convert somas to PLY, the writing directory path
of convert somas to PLY must match with directory. output ambient occlusion and broken mesh are
the paths where meshes will be saved after the ambient occlusion and Gaussian mixture model com-
putation. It is recommended not to change these paths unless you want to see the three-dimensional
output of each step. In that case, you can open a these meshes with MeshLab user’s interface (see
Appendix B). output poisson reconstruction is the path where repaired somas will be saved. Usually
they will be the first input of the segment somas function.

3.3 segment somas

Once the surface of the somas is appropriate, next step is the definition of soma. To achieve it you
must run the segment somas function. As in repair somas case, we provide an example:

segment_somas(directory = file.path(tempdir(), "poisson_reconstruction_ao"),

output_shape_diameter = file.path(tempdir(), "sdf"), broken_mesh = file.path(tempdir(),

"broken_mesh_sdf"), output_poisson_reconstruction = file.path(tempdir(),

"poisson_reconstruction_sdf"), final_result = file.path(tempdir(), "final_result"))

The first input, directory, have to be a path to the folder where meshes in PLY format are saved
so:

∙ They are the output of the repair somas function.

∙ They are the output of the convert somas to PLY function if the somas were in VRML format
and are not damaged by the injection.

∙ They are the path to a folder where a set of somas that are in PLY format and were not damaged
by the injection are saved.

The output shape diameter, broken mesh and output poisson reconstruction inputs are the paths
where meshes will be saved after the shape diameter function, Gaussian mixture model and poisson
reconstruction computation. It is recommended not to change these paths unless you want to see the
three-dimensional output of each step. Last input, final result is the final result of all process, that is,
the definition of soma. The validation process is applied to these somas.

3.4 Validation

In the paper the somas are validated in two different ways. We compute 𝑅𝑀𝑆𝐸 between the surface
of the meshes and 𝑀𝐴𝑄𝑆 between the volume of the meshes.

5



3.4.1 𝑅𝑀𝑆𝐸

You can carried out the first validation method using RMSE mesh distance function. The interexpert
and intraexpert validation are included in the examples of this function.

Interexpert

path_somas_algorithm <- file.path(tempdir(), "final_result")

path_somas_experts <- system.file("test/pre_repaired", package = "SomaMS")

experts_paths <- list.dirs(path_somas_experts, recursive = F)

pre_repaired_RMSE <- RMSE_mesh_distance(path_somas_algorithm, experts_paths[1],

experts_paths[2], TRUE)

path_somas_algorithm <- file.path(tempdir(), "final_result")

path_somas_experts <- system.file("test/post_repaired", package = "SomaMS")

experts_paths <- list.dirs(path_somas_experts, recursive = F)

post_repaired_RMSE <- RMSE_mesh_distance(path_somas_algorithm, experts_paths[1],

experts_paths[2], TRUE)

X11(width = 18, height = 10.37)

par(mfrow = c(1, 2))

values_barplot <- t(pre_repaired_RMSE)

colors <- c(rainbow(3))

mp <- barplot2(values_barplot, main = "RMSE before repairing experts’ somas",

ylab = "RMSE", beside = TRUE, col = colors, ylim = c(0, 1.7), cex.names = 1.5,

cex.lab = 1.5, cex.axis = 1.5)

legend("top", legend = c("Procedure Vs Expert 1", "Procedure Vs Expert 2",

"Expert 1 Vs Expert 2"), fill = colors, box.col = "transparent",

x.intersp = 0.8, cex = 1.5)

mtext(1, at = mp[2,], text = c("Neuron 1", "Neuron 2", "Neuron 3", "Neuron 4",

"Neuron 5", "Neuron 6", "Neuron 7", "Neuron 8", "Neuron 9"), line = 0.5, cex = 1)

legend("topleft", legend = "", title = "A", box.col = "transparent", cex = 2)

values_barplot <- t(post_repaired_RMSE)

colors <- c(rainbow(3))

mp <- barplot2(values_barplot, main = "RMSE after repairing experts’ somas",

ylab = "RMSE", beside = TRUE, col = colors, ylim = c(0, 1.7), cex.names = 1.5,

cex.lab = 1.5, cex.axis = 1.5)

legend("top", legend = c("Procedure Vs Expert 1", "Procedure Vs Expert 2",

"Expert 1 Vs Expert 2"), fill = colors, box.col = "transparent",

x.intersp = 0.8, cex = 1.5)

mtext(1, at = mp[2,], text = c("Neuron 1", "Neuron 2", "Neuron 3", "Neuron 4",

"Neuron 5", "Neuron 6", "Neuron 7", "Neuron 8", "Neuron 9"), line = 0.5, cex = 1)

legend("topleft", legend = "", title = "B", box.col = "transparent", cex = 2)

print(paste0("Mean interexpert RMSE: ", mean(post_repaired_RMSE[,3])))

Intraexpert

path_somas_experts <- system.file("test/intraexpert", package = "SomaMS")

experts_paths <- list.dirs(path_somas_experts, recursive = F)

6



expert_1_days <- list.dirs(experts_paths[1], recursive = F)

expert_2_days <- list.dirs(experts_paths[2], recursive = F)

intraexpert_expert_1 <- RMSE_mesh_distance(expert_1_days[1], expert_1_days[2],

expert_1_days[3], TRUE)

intraexpert_expert_2 <- RMSE_mesh_distance(expert_2_days[1], expert_2_days[2],

expert_2_days[3], TRUE)

X11(width = 18, height = 10.37)

par(mfrow = c(1, 2))

valuesBarplot <- t(intraexpert_expert_1)

colors <- c(rainbow(3))

mp <- barplot2(valuesBarplot, main = "Intra-expert variability of the first expert ",

ylab = "RMSE", beside = TRUE, col = colors, ylim = c(0,1.6), cex.names = 1.5,

cex.lab = 1.5, cex.axis = 1.5)

legend("top", legend = c("Day 1 Vs Day 2","Day 1 Vs Day 3","Day 2 Vs Day 3"),

fill = colors, box.col = "transparent", x.intersp = 0.8, cex = 1.5)

mtext(1, at = mp[2,], text = c("Neuron 1", "Neuron 2", "Neuron 3", "Neuron 4",

"Neuron 5","Neuron 6"),line = 0.5, cex = 1.3)

legend("topleft", legend = "", title = "A", box.col = "transparent", cex = 2)

values_barplot <- t(intraexpert_expert_2)

colors <- c(rainbow(3))

mp <- barplot2(values_barplot, main = "Intra-expert variability of the second expert ",

ylab = "RMSE", beside = TRUE, col = colors, ylim = c(0, 1.6), cex.names = 1.5,

cex.lab = 1.5, cex.axis = 1.5)

legend("top",legend = c("Day 1 Vs Day 2","Day 1 Vs Day 3","Day 2 Vs Day 3"),

fill = colors, box.col = "transparent", x.intersp = 0.8, cex = 1.5)

mtext(1, at = mp[2,], text = c("Neuron 1", "Neuron 2", "Neuron 3", "Neuron 4",

"Neuron 5", "Neuron 6"), line = 0.5, cex = 1.3)

legend("topleft", legend = "", title = "B", box.col = "transparent", cex = 2)

print(paste0("Mean RMSE for the first expert: ", mean(c(intraexpert_expert_1))))

print(paste0("Mean RMSE for the second expert: ", mean(c(intraexpert_expert_2))))

Wilcoxon rank test
In addition, the significance of the output of RMSE mesh distance can be tested with wilcoxon RMSE

which also have an example.

path_somas_algorithm <- file.path(tempdir(), "final_result")

path_somas_experts <- system.file("test/pre_repaired",package="SomaMS")

experts_paths <- list.dirs(path_somas_experts,recursive=F)

pre_repaired_RMSE <- RMSE_mesh_distance(path_somas_algorithm, experts_paths[1],

experts_paths[2], TRUE)

path_somas_algorithm <- file.path(tempdir(), "final_result")

7



path_somas_experts <- system.file("test/post_repaired", package = "SomaMS")

experts_paths <- list.dirs(path_somas_experts,recursive=F)

post_repaired_RMSE <- RMSE_mesh_distance(path_somas_algorithm, experts_paths[1],

experts_paths[2], TRUE)

pvalue_before_repairing <- wilcoxon_RMSE(pre_repaired_RMSE)

print(paste0("p-value between algorithm and first expert: ", pvalue_before_repairing[1]))

print(paste0("p-value between algorithm and second expert: ", pvalue_before_repairing[2]))

pvalue_after_repairing <- wilcoxon_RMSE(post_repaired_RMSE)

print(paste0("p-value between algorithm and first expert: ", pvalue_after_repairing[1]))

print(paste0("p-value between algorithm and second expert: ", pvalue_after_repairing[2]))

3.4.2 𝑀𝐴𝑄𝑆

We also provide an example of the second validation method, the 𝑀𝐴𝑄𝑆 function. Besides, we include
the a function that computes the volume of all the meshes in PLY format saved in a folder, that is,
the compute meshes volumes function.

An example of how to compute the volumes of a set of meshes that are placed in a folder is:

compute_meshes_volumes(file.path(tempdir(), "final_result"))

We applied compute meshes volumes in the 𝑀𝐴𝑄𝑆 computation. An example of how to
calculate the 𝑀𝐴𝑄𝑆 measure between two sets of meshes is:

path_somas_algorithm <- file.path(tempdir(), "final_result")

path_somas_experts <- system.file("test/post_repaired", package = "SomaMS")

experts_paths <- list.dirs(path_somas_experts, recursive = F)

path_somas_expert_1 <- experts_paths[1]

path_somas_expert_2 <- experts_paths[2]

MAQ_S_result <- MAQ_S(path_somas_algorithm,path_somas_expert_1, path_somas_expert_2)

print(paste("MAQ_S_12 is:", MAQ_S_result[1] * 100, "%"))

print(paste("MAQ_S_13 is:", MAQ_S_result[2] * 100, "%"))

print(paste("MAQ_S_23 is:", MAQ_S_result[3] * 100, "%"))

print(paste("Mean MAQ_S between algorithm and experts is:", mean(c(MAQ_S_result[1],

MAQ_S_result[2])) * 100, "%"))

print(paste("Difference between experts MAQ_S and mean MAQ_S of algorithm is:",

abs(MAQ_S_result[3] - mean(c(MAQ_S_result[1], MAQ_S_result[2]))) * 100, "%"))

8



A Configure MeshLab Path

Figure 5: Step 1

Figure 6: Step 2

9



Figure 7: Step 3

Figure 8: Step 4

10



Figure 9: Step 5

Figure 10: Step 6

11



Figure 11: Step 7 and 8

12



B See output in Meshlab

First you have to open MeshLab application so you see the initial window of MeshLab (see Fig. 12).
Then click the Import mesh icon that we denote in red in the previous image and search the mesh
you want to analyzed.

Figure 12: Initial MeshLab window

As a result, you obtain a three-dimensional representation of your mesh (see Fig. 13).

Figure 13: Output example

13


	Prerequirements
	3DSomaMS installation
	Using 3DSomaMS
	convert_somas_to_PLY
	repair_somas
	segment_somas
	Validation
	RMSE
	MAQS


	Configure MeshLab Path
	See output in Meshlab

